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Maize kernel traits such as kernel length, kernel width and kernel number determine kernel weight and,
consequently, maize yield. Therefore, the measurement of kernel traits is important for maize breeding
and the evaluation of maize yield. The conventional method for measuring kernel traits is still manual,
which is time consuming, costly and subjective. In this study, a novel maize kernel traits scorer
(MKTS) was developed for the automatic measurement of 12 maize kernel traits based on line-scan imag-
ing, image processing, and automatic control techniques. Here, total of 615 samples were measured to
evaluate the system performance. The results showed that the MKTS was capable of evaluating maize
kernel traits with the mean absolute percentage error of the manual and automatic measurements less
than 5% and the measurement efficiency of approximately 72 s for the measurement of 6 ears. In conclu-
sion, this high-throughput scorer will provide maize scientists with a novel tool to assist in maize func-
tional genetics and maize breeding.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Maize (Zea mays L.) is a primary food, feed and fuel worldwide
[1,2]. To meet the demands of the world’s growing population,
improvement in maize yield and quality through the combination
of traditional and molecular breeding is urgently needed [2]. Ker-
nel traits are important in maize breeding programs. Such traits
include kernel yield [3], which is determined by the ear number
per plant, the kernel number per ear and the kernel weight
[4–6]. The kernel weight is one of the most important agronomic
traits; it is determined by kernel shape, including the kernel length,
kernel width, and kernel thickness [7]. With the development of
next generation sequencing technologies, the generation of high
quality genotype data has become extremely feasible in maize.
To dissect the genetic basis of maize kernel traits, the accurate
measurement of maize kernel traits is crucial and advantageous
in functional genomics research and genetic improvement in
maize.

The conventional method for measuring and recording maize
kernel traits is still manual, which is time consuming, costly, and
subjective [8,9]. Plant phenomics is a multidisciplinary field that
combining of mechanics, automatic control, photonics-based tech-
niques, and digital image processing to plant science study [10].
Digital imaging has been widely used in agriculture, such as in
the detection of rice yield-related traits [7,11], the determination
of the surface color of agricultural products [12–14], the detection
mechanical damage in kernels [12,15,16], locating insects in cereal
grains [17], mapping of seed shape/size QTL [4–6,18], and the eval-
uation of grain quality [19–23]. For maize, phenomics is used to
evaluate the quality of kernels, classify maize kernels into size cat-
egories, and measure kernel shape. Valiente-Gonzalez [24]
designed a computer vision system to capture single dent corn ker-
nels and determine whether kernels were damaged using a princi-
pal component analysis (PCA) algorithm. Xun et al. [25] developed
an on-line seed grading system based on machine vision; corn
seeds were sorted into four grades according to morphological
parameters, with an average eligible grading ratio of 81.90%. Steen-
hoek and Precetti [26] evaluated the use of two-dimensional image
analysis for the classification of maize kernels according to size
with accuracy greater than 96% for round-hole decisions and less
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than 80% for flatness decisions. Ni et al. [27] developed an elec-
tronic corn kernel size grading system based on machine vision
and measured kernel length, width and projected area. However,
the kernels were individually measured in stationary way, and
the processing time was between 2.03 and 2.09 s per kernel. Sev-
erini et al. [28] developed a method for counting maize kernels
using the open source software ImageJ, but maize kernels were
spread over the sample platform by hand. Recently, with manual
spreading samples, some researchers measure particle shape/size
using image processing software such as ImageJ and SmartGrain.
Igathinathane et al. [29] developed an ImageJ plugin to identify
disjoint particles shape and determine their particles size distribu-
tion. Tanabata et al. [30] developed SmartGrain software for high-
throughput measurement of seed shape. To the best of our knowl-
edge, little effort has been undertaken for the high-throughput
extraction of maize kernel traits in commercialized products.

In this study, automatic control and image analysis techniques
based on line-scan imaging were used to develop a high-
throughput maize kernel traits scorer (MKTS) to measure maize
kernel traits. These traits included ear number (EN), kernel length
(KL), kernel width (KW), the length-width ratio (LWR), kernel pro-
jected area (KPA), kernel projected perimeter (KPP), the total ker-
nel number (TKN), the total kernel weight (TKW), the weight per
100 kernels (100-KW), the kernel weight per ear (KWPE), the ker-
nel number per ear (KNPE), and roundness. Equipped with image
processing and automatic control technologies, this novel instru-
ment provided a high-throughput and high-accuracy method for
maize kernel scoring, and has potential to be popularized in maize
functional genetics, genomics and breeding.
2. Materials and methods

2.1. Materials

In this study, a total of 615 different maize samples were used
in this study. From these 615 samples, 20 maize kernels with uni-
form areas were chosen to evaluate the system performance for
measuring the kernel shape (KL, KW, and LWR) and the other
remaining kernels were used to evaluate the system performance
for measuring the TKN, TKW, and 100-KW. For the manual mea-
surement of the KL and KW, the length and width of each kernel
of 20 maize kernels with uniform areas were measured with three
people using a digital vernier caliper, and the average value was
calculated. For the manual measurement of TKN, each sample
was counted with three people and the average was calculated.
After measured manually, all the 615 maize samples were mea-
sured automatically using the MKTS system. Moreover, 10 differ-
ent maize samples were chosen randomly from the 615 samples
to validate the repeatability of the MKTS. The experimental design
was show in the Supplementary file 1.
2.2. System description

The user operation area and a prototype of the system are
shown in Fig. 1a. The operation area included a software interface,
a barcode scanner, a feeding interface and a vibrating feeder. When
maize kernels were manually placed in the feeding interface, the
samples were delivered to the inspection unit (Fig. 1b) by the
vibrating feeder. The inspection unit was designed with the follow-
ing three key components: a line-scan camera with short-focus
lens, a line-array LED light source and a conveyor with a servo
motor. To acquire maize kernel images continuously and shorten
image processing time, a line scan camera was applied instead of
a conventional frame camera because merging kernel images is
easier with a line scan camera than that of frame camera. To
achieve high-throughput and dynamic measurements, an indus-
trial conveyor driven by the servo motor, which was blackened
to enhance contrast between the maize kernels and the back-
ground, delivered maize kernels through the imaging area auto-
matically. The two line-array LED light sources provided uniform
illumination. The inner layout of the system is illustrated in
Fig. 1c; this included the inspection unit, a power adapter for the
light source, a programmable logic controller (PLC), a computer, a
feeder driver, an electronic scale and a collection box. The feeder
control, the conveyor control and communication with computer
were achieved via the PLC. The collection box was used to collect
the measured maize kernels. The TKW was obtained via the elec-
tronic scale. The details of the component used in the maize kernel
traits scorer (MKTS) were shown in the Supplementary file 2. The
operation procedure video of the MKTS was shown in the Supple-
mentary file 3.

2.3. Operation procedure and system controls

The system operation procedure (shown in Fig. 2a) included the
following steps: (1) Start the system and scan the barcode; (2)
input the ear number; (3) put the kernels into the feeding interface
and start the inspection; (4) allow each frame image to be acquired
and delivered to the queue for image processing; (5) after all the
kernels were scanned, end the current task and acquire the total
kernel weight with the electronic scale; and (6) find the results,
including the original gray image and the maize kernel traits,
stored in the user-predefined folder. The PLC was programmed
using CX-Programmer 7.3 (Omron, Japan), the software for the
computer was developed using LabVIEW 8.6 (National Instru-
ments, USA), and the software for statistics analysis of maize ker-
nel traits was SPSS (version 19.0, International Business
Machines Corporation, USA).

2.4. Image processing and the extraction of traits

A flow chart of the image processing used for the measurement
of maize kernel traits is outlined in Fig. 2b. After each kernel was
captured by the line-array camera, the kernel images were sent
to a queue. Image processing was synchronous with image acqui-
sition, which included the following steps: (1) N frame images
were fetched from the queue and a non-adaptive thresholding
algorithm (the threshold value was 10) was applied to divide the
gray image into a background and foreground for each image
frame; then several morphological operators (including open and
filling holes) were used to process the binary image; (2) the pro-
cessed image was split into two parts, including a cut part and a
remaining part; (3) the remaining part of the N image was merged
with the cut part of the former image to obtain a merged image; (4)
the mean value of the projected area (MVPA) of all objects was
obtained and the objects with a projected area less than 0.4 times
the MVPA were not considered as maize kernels and removed
using particle filter operator; (5) then the Elongation Factor for
all kernel samples (1.4–3.4), which was defined as maximum
diameter divided by equivalent rectangle short side, was calculated
and the objects with Elongation Factor more than 4 were not con-
sidered as maize kernels and removed using particle filter opera-
tor; (6) the projected area of kernels was used to classify
touching and non-touching kernels, which the objects with a pro-
jected area more than 1.45 times the MVPA were considered to be
touching objects, and the remaining objects were considered to be
non-touching objects; (7) with those non-touching kernels, all pix-
els of all non-touching kernels were summed and divided by the
number of those non-touching kernels, then multiplied by the spa-
tial resolution (0.02295684 mm2/pixel) would be the MVPA; all
pixels of all non-touching kernels’ edges were summed and divided



Fig. 1. The maize kernel traits scorer, (a) the user operation area and the system prototype; (b) the inspection unit; (c) the inner layout of the system.
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by the number of those non-touching kernels, then multiplied by
the spatial resolution (0.1515 mm/pixel) would be the MVPP; (8)
each non-touching kernel was rotated with its rotation angle,
which was defined as the angle of the line passing through the par-
ticle center of mass with the lowest moment of inertia and was cal-
culated using the Eq. (1) with LabVIEW Sub VI (IMAQ Particle
Analysis) (shown in Fig. 3f); the minimum enclosing rectangle
(shown in Fig. 3f) was obtained; the average length of all minimum
enclosing rectangles for all non-touching kernels multiplied by the
spatial resolution (0.1515 mm/pixel) would be the mean kernel
length, the average width of them multiplied by the spatial resolu-
tion would be the mean kernel width, and the ratio of the mean
length to the mean width would be the mean kernel length-
width ratio; (9) the projected areas of the touching objects were
divided by the MVPA and the number of objects in touching image
(denoted by N2) was obtained, along with the number of non-
touching objects (denoted by N1), such that the number of all
maize kernels (NMk) could be calculated based on the equation
NMk = N1 + N2; (10) the TKW was obtained using an electronic
scale, and the 100-KW was calculated using the Eq. (5).

h ¼ 1
2
a tan

2Ixy
Ixx � Iyy

� �
ð1Þ

In Eq. (1), h is the rotation angle; Ixx is the moment of Inertia xx and
is calculated by Eq. (2); Ixy is the moment of Inertia xy and is calcu-
lated by Eq. (3); Iyy is the moment of Inertia yy and is calculated by
Eq. (4).

Ixx ¼
X

x2 � ðP xÞ2
A

ð2Þ

Ixy ¼
X

xy�
P

x �P y
A

ð3Þ

Iyy ¼
X

y2 � ðP yÞ2
A

ð4Þ

In Eqs. (2)–(4), x is the x-coordinate of the foreground points in the
kernel; y is the y-coordinate of foreground points in the kernel; A is
the area of the kernel.
100-KW ¼ TKW � 100
NMK

ð5Þ

The key image analysis procedures are shown in Fig. 3. The orig-
inal merged image is shown in Fig. 3a. The small particles (the
white triangles in Fig. 3a) that were not maize kernels were
removed (Fig. 3b). The results of the touching and non-touching
particle assessments are shown in Fig. 3c and d, respectively. Each
single particle was extracted (Fig. 3e) to calculate the kernel length
and kernel width within the minimum enclosing rectangle (Fig. 3f).
The source code for image processing was shown in the Supple-
mentary file 4.
3. Results and discussion

3.1. Selection of the threshold value to distinguish touching kernels
from non-touching kernels

To choose a threshold value to distinguish touching kernels
from non-touching kernels, the misjudgment rate (MR, defined
by Eq. (6)) distributions of KPA with different threshold values
were analyzed using 65 samples chosen randomly from the 615
samples; the results are shown in Fig. 4. The minimum MR was
obtained when the threshold value was set at 1.4 times the average
projected area or 1.45 times the average projected area. We
selected 1.45 times the average projected area as the optimal
threshold value to distinguish non-touching kernels from touching
kernels.
MR ¼ n1 þ n2

n
� 100% ð6Þ
In Eq. (6), MR is the misjudgment rate, n1 is the number of touching
maize kernels that were falsely accepted as non-touching kernels,
n2 is the number of non-touching maize kernels that were falsely
accepted as touching kernels, and n is the total number of kernels
in the image which is acquired by counting maize kernels in the
image manually.



Fig. 2. The system operation procedure and image processing flow chart for the measurement of maize kernel traits, (a) the system operation procedure; (b) image processing
and trait extraction flow chart; (c) maize kernel traits.
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3.2. Accuracy of system measurements for KL, KW, LWR, and TKN

In total, 615 maize samples were automatically measured using
the MKTS system. The frequency number plots for KL, KW, LWR,
and TKN were shown in Fig. 5b, d, f, and h, respectively. The mean
absolute percentage errors (MAPE, defined by Eq. (7)) for KL, KW,
LWR, and TKN [7] were 1.24%, 2.24%, 2.58%, and 0.67%, respec-
tively. The root mean squared error (RMSE, defined below by Eq.
(8)) for KL, KW, LWR, and TKN were 0.15 mm, 0.23 mm, 0.04,
and 2.26, respectively. The standard deviation of APE (STDEVAPE,
defined by Eq. (9)) for KL, KW, LWR, and TKN were 1.09%, 1.73%,
2.02%, and 0.74%, respectively. The R2 (the square of the correlation
coefficient) for KL, KW, LWR, and TKN were 0.97, 0.96, 0.81, and
0.99, respectively.

The scatter plots for the automatic measurements versus the
manual measurements for KL, KW, LWR, and TKN were shown in
Fig. 5a, c, e, and g, respectively.

MAPE ¼ 1
n

Xn
i¼1

jxai � xmij
xmi

� 100% ð7Þ
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðxai � xmiÞ2

r
ð8Þ

STDEVAPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðAPEi �MAPEÞ2
n� 1

s
ð9Þ

In Eqs. (7)–(9), xmi is the manually measured value; xai is the auto-
matically measured value, n is the number of maize samples; APEi is
the absolute percentage error of the ith maize sample.

From the frequency number plots (Fig. 5b, d, and h), all absolute
percentage errors for KL, KW, and TKN were less than 7%, 10%, and
5%, respectively. The measuring accuracy of maize kernel traits was
shown in Table 1. The basic description statistics analysis of maize
kernel traits was shown in Table 2, where the roundness is defined
by Eq. (10). The closer the shape of a kernel was to a disk, the closer
the roundness to 1. The MAPE of all maize kernel traits were within
3%.

Roundness ¼ Perimeter
the ciucumference of a circle with the same area

ð10Þ



Fig. 3. The key image analysis procedures, (a) the original merged image; (b) the image after small particles were removed; (c) the results of the touching particles; (d) the
results of the non-touching particles; (e) a selected single particle; (f) a rotated single particle.

Fig. 4. The misjudgment rate (MR) distributions for KPA with different threshold values. Kernels with projected areas larger than the threshold value were considered to be
touching kernels; all remaining kernels were considered to be non-touching kernels. ‘⁄’ is the extreme outlier, ‘�’ is the mild outliers.
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3.3. Repeatability of system measurements

To evaluate the repeatability of system measurements, we ran-
domly selected 10 kernels samples from 615 maize samples and
measured all of the kernel traits ten times. The coefficients of vari-
ation (C.V) for all kernel traits were within 3%. The results were
shown in Table 3.

Ex ¼ 1
n

Xn

i¼1

xai

C:V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðxai � ExÞ2

q
Ex

ð11Þ
3.4. Measurement efficiency

If one worker operated the software, scanned the barcode and
input the maize kernels, and another worker collected the maize
kernels and pressed the print button on the electronic scale, the
system would require approximately 72 s to measure 6 ears (when
all kernels are input together at one time). If the system is run con-
tinuously for 24 h, the measuring efficiency would increase, up to
1200 samples per day. However, two experienced workers are
required for approximately 540 s to manually measure 6 ears; this
includes the counting and recording of all 12 traits, but not typing
or correcting the data. From this point of view, the efficiency of the
system was more than 7 times greater than that of manual opera-
tions at their maximum throughput.
4. Conclusions

Equipped with multidisciplinary techniques, including photon-
ics, automatic controls and digital imaging processing, a maize ker-
nel traits scorer (MKTS) was developed to measure 12 maize kernel
traits. We evaluated the measurement accuracy and the repeatabil-
ity of the system. We also demonstrated the use of the system to



Fig. 5. Frequency number plots and scatter plots of the automatic measurements versus the manual measurements of maize kernel traits. (a) Scatter plots of the automatic
measurements versus the manual measurements of kernel length; (b) frequency number plots for kernel length; (c) scatter plots of the automatic measurements versus the
manual measurements of kernel width; (d) frequency number plots for kernel width; (e) scatter plots of the automatic measurements versus the manual measurements of
kernel length-width ratio; (f) frequency number plots for kernel length-width ratio; (g) scatter plots of the automatic measurements versus the manual measurements of
total kernel number; (h) frequency number plots for total kernel number.
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facilitate the measurement of maize kernel traits. In the future, if
maize kernel volume is obtained, the bulk density (defined as the
weight of 1 liter volume of kernels) can also be calculated. Com-
pared with traditional phenotyping, MKTS provided the following
three major advantages: automation, high-throughput and the
absence of human disturbance. In conclusion, this high-accuracy



Table 1
Measurement accuracy for maize kernel traits.

Sample number Kernel traits R2 RMSE MAPE (%) STDEVAPE (%) Frequencya

0–3% 3–5% 5–10% More than 10%

615 KL (mm) 0.97 0.15 1.24 1.09 93.17% 5.53% 1.30% 0
KW (mm) 0.96 0.23 2.24 1.73 73.33% 18.70% 7.97% 0
LWR 0.81 0.04 2.58 2.02 66.99% 21.46% 10.89% 0.65%
TKN 0.99 2.26 0.67 0.74 98.21% 1.79% 0 0

a Frequency of 0–3%: the ratio of samples whose APE was between 0% and 3%; Frequency of 3–5%: the ratio of samples whose absolute percentage error (APE) was between
3% and 5%; Frequency of 5–10%: the ratio of samples whose APE was between 5% and 10%; Frequency of more than 10%: the ratio of samples whose APE was more than 10%.

Table 2
The basic description statistics analysis of maize kernel traits for 615 samples.

Sample number Statistics description TKN KL (mm) KW (mm) LWR KPA (mm2) KPP (mm) TKW (g) 100-KW (g) Roundness

615 Range 16–451 7.19–11.98 5.86–9.15 1.10–1.51 30.34–67.18 20.36–30.59 3.30–132.30 10.53–33.67 1.03–1.10
Mean 225.39 9.64 7.48 1.29 49.16 25.94 54.16 22.74 1.05
STDEV 89.08 0.89 0.83 0.07 8.66 2.29 28.84 5.23 0.01

Table 3
Maize kernel traits for 10 samples (randomly selected from 615 samples) measured ten times.

Sample Statistics TKN KL KW LWR KPA KPP 100-KW

1 STDEV 1.89 0.07 0.07 0.01 0.30 0.08 0.13
C.V 0.59% 0.75% 0.85% 0.99% 0.58% 0.29% 0.59%

2 STDEV 1.34 0.09 0.07 0.01 0.42 0.12 0.09
C.V 0.46% 0.94% 0.98% 0.88% 0.93% 0.46% 0.47%

3 STDEV 2.71 0.06 0.06 0.01 0.30 0.12 0.17
C.V 0.85% 0.61% 0.84% 0.90% 0.64% 0.45% 0.85%

4 STDEV 1.96 0.09 0.06 0.02 0.43 0.11 0.13
C.V 0.63% 0.95% 0.73% 1.44% 0.88% 0.44% 0.63%

5 STDEV 1.03 0.08 0.05 0.01 0.45 0.14 0.08
C.V 0.44% 0.83% 0.74% 0.94% 1.02% 0.56% 0.44%

6 STDEV 2.04 0.09 0.06 0.02 0.53 0.19 0.14
C.V 0.73% 1.00% 0.85% 1.31% 1.13% 0.76% 0.73%

7 STDEV 1.55 0.10 0.11 0.02 0.60 0.20 0.11
C.V 0.49% 1.06% 1.47% 1.77% 1.18% 0.75% 0.49%

8 STDEV 1.06 0.04 0.05 0.01 0.39 0.11 0.08
C.V 0.37% 0.42% 0.67% 0.81% 0.80% 0.42% 0.37%

9 STDEV 1.57 0.09 0.03 0.02 0.20 0.08 0.08
C.V 0.50% 0.97% 0.50% 1.35% 0.47% 0.33% 0.50%

10 STDEV 1.18 0.07 0.05 0.01 0.36 0.09 0.11
C.V 0.52% 0.69% 0.66% 0.94% 0.71% 0.31% 0.52%

C.V: coefficient of variation, which is defined by Eq. (11).
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and high-throughput scorer will provide maize scientists with a
novel tool to assist with research in maize genetics, functional
genomics and breeding.
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